Abstract

The metabolic identity of a hepatocyte is determined by its position along the porto-centrilobular axis of a liver lobule. Altered patterns of metabolic liver zonation are associated with several pathologies. In hepatitis C, although only a minority of hepatocytes harbour the virus, the liver undergoes major systemic metabolic changes. We have investigated the HCV-driven mechanisms that allow the systemic loss of metabolic zonation. Transgenic mice with hepatocyte-targeted expression of all HCV proteins (FL-N/35 model) and needle biopsies from hepatitis C patients were studied with respect to patterns of lipid deposition in the context of metabolic zonation of the liver lobule. We report that low levels of viral proteins are sufficient to drive striking alterations of hepatic metabolic zonation. In mice, a major lipogenic enzyme, fatty acid synthase, was redistributed from its normal periportal expression into the midzone of the lobule, coinciding with a highly specific midzone accumulation of lipids. Strikingly, alteration of zonation was not limited to lipogenic enzymes and appeared to be driven by systemic signalling via the Wnt/β-catenin pathway. Importantly, we show that similarly perturbed metabolic zonation appears to precede steatosis in early stages of human disease associated with HCV infection. Our results rationalize systemic effects on liver metabolism, triggered by a minority of infected cells, thus opening new perspectives for the investigation of HCV-related pathologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call