Abstract
The NS3 serine protase of Hepatitis C virus (HCV) requires NS4A protein as a cofactor for efficient cleavage at four sites in the nonstructural region. The cofactor activity has been mapped to the central hydrophobic region (aa 22–34) of this 54-amino-acid NS4A protein, and site-directed mutagenesis has identified alternating hydrophobic amino acids, particularly Ile25 and Ile29, as critically important. A double mutant of NS4A cofactor peptide, I25A/I29A, completely abolished the cofactor activity. We now report that the cofactor peptide activity in the I25A/I29A double mutant can be restored specifically by introducing a biotin–aminohexanoic acid fusion at the N-terminus. In addition, a similar N-terminal fusion of biotin–aminohexanoic acid with the wild-type 4A peptide significantly enhanced cofactor activity. Our data corroborate the crystal structure-based hypothesis of hydrophobic interaction between the N-terminus of NS4A and the N-terminal α0 helix of NS3 protease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.