Abstract
Mucosal immunization offers various advantages over parenteral vaccination, but typically requires potent delivery systems and/or adjuvants to result in protective immunity. Here we report on the preparation of trimethylated chitosan (TMC) and chitosan (CHT) nanoparticles (NPs) loaded with hepatitis B surface antigen (HB), by a simple and scalable method. TMC:HB and CHT:HB NPs were prepared by direct coating of antigen by polymer. The impact of buffer, pH and tonicity of the dispersion medium on NPs’ polydispersity, zeta potential and association percentage of polymer with antigen was evaluated. Moreover, biological properties of both NPs were addressed in vitro by studying their effect on cell viability, transepithelial electrical resistance (TEER) and dendritic cell (DC) maturation. Finally, immunogenicity was assessed by evaluating IgG, IgG1, IgG2a, IgA titers and sIgA after both mucosal (nasal) as well intramuscular (i.m.) vaccination in a murine model. TMC:HB and CHT:HB NPs, prepared in acetate buffer pH 6.7 of three different tonicities, had comparable size, polydispersity, zeta potential and association percentage. TMC:HB NPs, but not CHT:HB NPs, had a mild negative effect on cell viability and TEER, and a considerable positive effect on DC maturation. After nasal and i.m. immunization, TMC:HB NPs in hypotonic medium and CHT:HB NPs in all media induced higher serum and nasal antibody titers compared with HB solution (P<0.001). After i.m. injection, both TMC:HB and CHT:HB NPs induced higher IgG and IgG2a titers compared with alum adsorbed HB (P<0.001). For CHT:HB NPs, the tonicity of the dispersion medium did not affect the mucosal and systemic immune responses. In conclusion, TMC NPs and CHT NPs are similarly potent mucosal immunoadjuvants for HB. Moreover, both polymers are potent immunoadjuvants for i.m. administered isotonic HB, resulting in higher IgG2a/IgG1 ratios compared with alum adjuvanted HB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.