Abstract

Hepatitis A virus (HAV) antagonizes the innate immune response by inhibition of double-stranded RNA (dsRNA)-induced beta interferon (IFN-beta) gene expression. In this report, we show that this is due to an interaction of HAV with the intracellular dsRNA-induced retinoic acid-inducible gene I (RIG-I)-mediated signaling pathway upstream of the kinases responsible for interferon regulatory factor 3 (IRF-3) phosphorylation (TBK1 and IKKepsilon). In consequence, IRF-3 is not activated for nuclear translocation and gene induction. In addition, we found that HAV reduces TRIF (TIR domain-containing adaptor inducing IFN-beta)-mediated IRF-3 activation, which is part of the Toll-like receptor 3 signaling pathway. As IRF-3 is necessary for IFN-beta transcription, inhibition of this factor results in efficient suppression of IFN-beta synthesis. This ability of HAV seems to be of considerable importance for HAV replication, as HAV is not resistant to IFN-beta, and it may allow the virus to establish infection and preserve the sites of virus production in later stages of the infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.