Abstract

Multiple, noneliminated references ((51)Cr-labeled erythrocytes, (125)I-albumin, [(14)C]- or [(3)H]sucrose, and [(2)H](2)O), together with [(3)H]hippurate or [(14)C]benzoate, were injected simultaneously into the portal vein of the perfused rat liver during single-pass delivery of benzoate (5-1,000 microM) and hippurate (5 microM) to investigate hippurate formation kinetics and transport. The outflow dilution data best fit a space-distributed model comprising vascular and cellular pools for benzoate and hippurate; there was further need to segregate the cellular pool of benzoate into shallow (cytosolic) and deep (mitochondrial) pools. Fitted values of the membrane permeability-surface area products for sinusoidal entry of unbound benzoate were fast and concentration independent (0.89 +/- 0.17 ml. s(-1). g(-1)) and greatly exceeded the plasma flow rate (0.0169 +/- 0.0018 ml. s(-1). g(-1)), whereas both the influx of benzoate into the deep pool and the formation of hippurate occurring therein appeared to be saturable. Results of the fit to the dilution data suggest rapid uptake of benzoate, with glycination occurring within the deep and not the shallow pool as the rate-determining step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call