Abstract

Hexabromocyclododecane (HBCD) is a brominated flame retardant found in the environment and human tissues. The toxicological effects of HBCD exposure are not clearly understood. We employed whole-genome RNA-sequencing on liver samples from male and female Fischer rats exposed to 0, 250, 1250, and 5000 mg technical mixture of HBCD/kg diet for 28 days to gain further insight into HBCD toxicity. HBCD altered 428 and 250 gene transcripts in males and females, respectively, which were involved in metabolism of xenobiotics, oxidative stress, immune response, metabolism of glucose and lipids, circadian regulation, cell cycle, fibrotic activity, and hormonal balance. Signature analysis supported that HBCD operates through the constitutive androstane and pregnane X receptors. The median transcriptomic benchmark dose (BMD) for the lowest statistically significant pathway was within 1.5-fold of the BMD for increased liver weight, while the BMD for the lowest pathway with at least three modeled genes (minimum 5% of pathway) was similar to the lowest apical endpoint BMD. The results show how transcriptional analyses can inform mechanisms underlying chemical toxicity and the doses at which potentially adverse effects occur. This experiment is part of a larger study exploring the use of toxicogenomics and high-throughput screening for human health risk assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.