Abstract

Microcystin-induced ser/thr protein phosphatase (PP) inhibition and toxicity were examined in the little skate (Raja erinacea), an evolutionarily primitive marine vertebrate. As in mammals, PP inhibition and toxicity were exclusively hepatocellular, but were much more persistent in the skate. A dose of 63 μg/kg given iv to adult male skates resulted in the near complete inhibition of hepatic PP activity at 24 h. PP activity was still 95% inhibited 7 days after dosing in skates given 125 μg/kg microcystin. Mortality occurred at doses of 500 μg/kg or more. Hepatic lesions were only seen in animals with fully inhibited PP activity in liver. The histological changes seen at 125 μg/kg were mild periportal inflammatory changes increasing in severity together with hepatocyte necrosis at higher doses of microcystin. Microcystin persisted and could be detected in plasma up to 7 days after dosing. This finding shows that, in the skate, as in mammals, the liver is the only organ capable of uptake of microcystin, since there was no significant inhibition of PP activity in the rectal gland and small decreases in PP activity of the kidney that were not time or dose dependent. In vitro microcystin caused dose-dependent inhibition of PP activity in isolated skate hepatocytes, while it was without effect in cultured rectal glands. Uptake of microcystin and the accompanying inhibition of PP activity in skate hepatocytes was prevented by the addition of a series of organic dyes and bile acids. The spectrum of inhibitors of microcystin uptake in skate is similar to that seen in the rat, indicating common features of the carrier(s) in these diverse species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.