Abstract

Endocrine disruptors that act via the androgen receptor (AR) are less well studied than environmental estrogens, and there is evidence that treatment with AR agonists can result in masculinization of female fish. In this study, female fathead minnows (FHM) were exposed to the model nonaromatizable androgen 5-alpha dihydrotestosterone (DHT) (100 μg/L), the ureic-based herbicide linuron (LIN) (100 μg/L), and a mixture of DHT and LIN (100 μg/L each) to better characterize androgen action in females. LIN was used because of reports that this chemical has an antiandrogenic mode of action in fish. After 21d, DHT and LIN treatments resulted in a significant depression of plasma vitellogenin (Vtg) and DHT and DHT+LIN increased the prevalence of nuptial tubercles in female FHMs indicating masculinization. Using iTRAQ and an LTQ Orbitrap Velos, ∼2000 proteins were identified in the FHM liver and the number of proteins quantified after exposures was >1200. Proteins that significantly and consistently changed in abundance across biological replicates included prostaglandin E synthase 3, programmed cell death 4a, glutathione S transferases, canopy, selenoprotein U, and ribosomal proteins. Subnetwork enrichment analysis identified that interferon and epidermal growth factor signaling were regulated by DHT and LIN, suggesting that these signaling pathways are correlated to depressed plasma vitellogenin. These data provide novel insight into hepatic protein networks that are associated with the process of masculinization in teleosts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.