Abstract

Hepatic portal venous infusion of nitric oxide synthase (NOS) inhibitors causes muscle insulin resistance, but the effects on hepatic glucose disposition are unknown. Conscious dogs underwent a hyperinsulinemic (4-fold basal) hyperglycemic (hepatic glucose load 2-fold basal) clamp, with assessment of liver metabolism by arteriovenous difference methods. After 90 min (P1), dogs were divided into two groups: control (receiving intraportal saline infusion; n = 8) and LN [receiving N(G)-nitro-L-arginine methyl ester (L-NAME), a nonspecific NOS inhibitor; n = 11] intraportally at 0.3 mg x kg(-1) x min(-1) for 90 min (P2). During the final 60 min of study (P3), L-NAME was discontinued, and five LN dogs received the NO donor SIN-1 intraportally at 6 mug x kg(-1) x min(-1) while six received saline (LN/SIN-1 and LN/SAL, respectively). Net hepatic fractional glucose extraction (NHFE) in control dogs was 0.034 +/- 0.016, 0.039 +/- 0.015, and 0.056 +/- 0.019 during P1, P2, and P3, respectively. NHFE in LN was 0.045 +/- 0.009 and 0.111 +/- 0.007 during P1 and P2, respectively (P < 0.05 vs. control during P2), and 0.087 +/- 0.009 and 0.122 +/- 0.016 (P < 0.05) during P3 in LN/SIN-1 and LN/SAL, respectively. During P2, arterial glucose was 204 +/- 5 vs. 138 +/- 11 mg/dl (P < 0.05) in LN vs. control to compensate for L-NAME's effect on blood flow. Therefore, another group (LNlow; n = 4) was studied in the same manner as LN/SAL, except that arterial glucose was clamped at the same concentrations as in control. NHFE in LNlow was 0.052 +/- 0.008, 0.093 +/- 0.023, and 0.122 +/- 0.021 during P1, P2, and P3, respectively (P < 0.05 vs. control during P2 and P3), with no significant difference in glucose infusion rates. Thus, NOS inhibition enhanced NHFE, an effect partially reversed by SIN-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.