Abstract

Low-density lipoprotein receptor (LDLR) is degraded by inducible degrader of LDLR (Idol) and protein convertase subtilisin/kexin type 9 (PCSK9), thereby regulating circulating LDL levels. However, it remains unclear whether, and if so how, these LDLR degraders affect each other. We therefore investigated effects of liver-specific expression of Idol on LDL/PCSK9 metabolism in mice and hamsters. Injection of adenoviral vector expressing Idol (Ad-Idol) induced a liver-specific reduction in LDLR expression which, in turn, increased very-low-density lipoprotein/LDL cholesterol levels in wild-type mice because of delayed LDL catabolism. Interestingly, hepatic Idol overexpression markedly increased plasma PCSK9 levels. In LDLR-deficient mice, plasma PCSK9 levels were already elevated at baseline and unchanged by Idol overexpression, which was comparable with the observation for Ad-Idol-injected wild-type mice, indicating that Idol-induced PCSK9 elevation depended on LDLR. In wild-type mice, but not in LDLR-deficient mice, Ad-Idol enhanced hepatic PCSK9 expression, with activation of sterol regulatory element-binding protein 2 and subsequently increased expression of its target genes. Supporting in vivo findings, Idol transactivated PCSK9/LDLR in sterol regulatory element-binding protein 2/LDLR-dependent manners in vitro. Furthermore, an in vivo kinetic study using (125)I-labeled PCSK9 revealed delayed clearance of circulating PCSK9, which could be another mechanism. Finally, to extend these findings into cholesteryl ester transfer protein-expressing animals, we repeated the above in vivo experiments in hamsters and obtained similar results. A vicious cycle in LDLR degradation might be generated by PCSK9 induced by hepatic Idol overexpression via dual mechanisms: sterol regulatory element-binding protein 2/LDLR. Furthermore, these effects would be independent of cholesteryl ester transfer protein expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.