Abstract

AbstractThe low-density lipoprotein (LDL) receptor–related protein (LRP) has a well-established role in the hepatic removal of atherogenic apolipoprotein E (APOE)–rich remnant lipoproteins from plasma. In addition, LRP recognizes multiple distinct pro- and antiatherogenic ligands in vitro. Here, we investigated the role of hepatic LRP in atherogenesis independent of its role in removal of APOE-rich remnant lipoproteins. Mice that allow inducible inactivation of hepatic LRP were combined with LDL receptor and APOE double-deficient mice (MX1Cre+LRPflox/floxLDLR–/–APOE–/–). On an LDLR–/–APOE–/– background, hepatic LRP deficiency resulted in decreased plasma cholesterol and triglycerides (cholesterol: 17.1 ± 5.2 vs 23.4 ± 6.3 mM, P = .025; triglycerides: 1.1 ± 0.5 vs 2.2 ± 0.8 mM, P = .002, for MX1Cre+LRPflox/flox-LDLR–/–APOE–/– and control LRPflox/flox-LDLR–/–APOE–/– mice, respectively). Lower plasma cholesterol in MX1Cre+LRPflox/flox-LDLR–/–APOE–/– mice coincided with increased plasma lipoprotein lipase (71.2 ± 7.5 vs 19.1 ± 2.4 ng/ml, P = .002), coagulation factor VIII (4.4 ± 1.1 vs 1.9 ± 0.5 U/mL, P = .001), von Willebrand factor (2.8 ± 0.6 vs 1.4 ± 0.3 U/mL, P = .001), and tissue-type plasminogen activator (1.7 ± 0.7 vs 0.9 ± 0.5 ng/ml, P = .008) compared with controls. Strikingly, MX1Cre+LRPflox/floxLDLR–/–APOE–/– mice showed a 2-fold higher atherosclerotic lesion area compared with controls (408.5 ± 115.1 vs 219.1 ± 86.0 103μm2, P = .003). Our data indicate that hepatic LRP plays a clear protective role in atherogenesis independent of plasma cholesterol, possibly due to maintaining low levels of its proatherogenic ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.