Abstract

Glycerol metabolism in rainbow trout is poorly studied even though it is at the interface between lipid and glucose metabolism. Moreover, glycerol can be an important ingredient in new aquafeed formulation to decrease the catabolism of dietary amino acids. Thus, the present study aimed to characterize for the first time the different genes coding for key enzymes and proteins involved in hepatic glycerol metabolism. From the trout genomes, all the paralogous genes coding for glycerol transport (aqp9b), glycerol kinase (gk2a and gk5), glycerol-3-phosphate phosphatase (pgp), and glycerol-3-phosphate dehydrogenase (gpd1a, gpd1b, and gpd1c) were identified. The ontogenesis determined that the capacity to metabolize glycerol begins with the apparition of the liver during the development (stage 22) and are more expressed at the endogenous–exogenous feeding period (stage 35). The postprandial regulation of the expression of these genes in juvenile trout showed that the postprandial peak of expression is between 4 and 24 h after the last meal for many of the genes, demonstrating that glycerol metabolism could be nutritionally regulated at a molecular level. However, surprisingly, no regulation of the mRNA abundance for the glycerol metabolism-related genes by different levels of dietary glycerol (0, 2.5, and 5%) have been detected, showing that hepatic glycerol metabolism is poorly regulated at a molecular level by dietary glycerol in rainbow trout juveniles.

Highlights

  • The production of aquafeeds based on fishmeal and fish oils has been a key element in recent aquaculture development (Klinger and Naylor, 2012; Food Agric Organ, 2018)

  • By analyzing the assembly of the rainbow trout genome on NCBI, we identified for the first time several genes sharing high sequence homology with zebrafish glycerol pathway-related genes: two sequences were related to aqp9b, three to gk, one to pgp, and five to gpd1

  • Aquaporin 9b Two sequences were identified in the trout genome sharing 70.9% (XP_021441897.1) and 71.6% (XP_021463056.1) identity with the zebrafish Aqp9b (ENSDARP00000069995.5) in terms of amino acid sequences

Read more

Summary

Introduction

The production of aquafeeds based on fishmeal and fish oils has been a key element in recent aquaculture development (Klinger and Naylor, 2012; Food Agric Organ, 2018). The stability of fishmeal and fish oil production and the dramatic increase in their costs, as well as the challenge of improving growth while reducing these production costs, are compromising the sustainable development of aquaculture. Fish diets have evolved to include an increased proportion of plant protein sources and vegetable oils (Gatlin et al, 2007; Naylor et al, 2009; Food Agric Organ, 2018). No adequate complete replacement for fishmeal and fish oil, with no negative effects on growth performance and fish quality, has yet been found (Panserat et al, 2009; Lazzarotto et al, 2018). Glycerol, a widely available and inexpensive source of dietary energy issue as a coproduct of biodiesel production (Ayoub and Abdullah, 2012; Quispe et al, 2013; Tan et al, 2013), has been proposed as a dietary component to replace other ingredients included in feeds

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call