Abstract

The early diagnosis of hepatic steatosis is important. No study has assessed hepatic fat quantification by using low-dose dual-energy computed tomography (CT). We assessed the accuracy of hepatic fat quantification using the multi-material decomposition (MMD) algorithm with low-dose non-contrast material-enhanced dual-energy CT. We retrospectively reviewed 33 prospectively enrolled patients who had undergone low-dose non-contrast material-enhanced dual-energy CT and magnetic resonance image (MRI) proton density fat fraction (PDFF) on the same day. Percentage fat volume fraction (FVF) images were generated using the MMD algorithm on the low-dose dual-energy CT data. We assessed the correlation between FVFs and MRI-PDFFs by using Spearman’s rank correlation. With a 5% cutoff value of MRI-PDFF for fatty liver, a receiver operating characteristic (ROC) curve analysis was performed to identify the optimal criteria of FVF for diagnosing fatty liver. CTDIvol of CT was 2.94 mGy. FVF showed a strong correlation with MRI-PDFF (r = 0.756). The ROC curve analysis demonstrated that FVF ≥ 4.61% was the optimal cutoff for fatty liver. With this cutoff value for diagnosing the fatty liver on low-dose dual-energy CT, the sensitivity, specificity, and area under the curve were 90%, 100%, and 0.987, respectively. The MMD algorithm using low-dose non-contrast material-enhanced dual-energy CT is feasible for quantifying hepatic fat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.