Abstract

Hepatic NADPH-cytochrome P450 oxidoreductase null (HRN™) mice exhibit normal hepatic and extrahepatic biotransformation enzyme activities when compared to wild-type (WT) mice, but express no functional hepatic cytochrome P450 activities. When incubated in vitro with [(14)C]-diclofenac, liver microsomes from WT mice exhibited extensive biotransformation to oxidative and glucuronide metabolites and covalent binding to proteins was also observed. In contrast, whereas glucuronide conjugates and a quinone-imine metabolite were formed when [(14)C]-diclofenac was incubated with HRN™ mouse liver, only small quantities of P450-derived oxidative metabolites were produced in these samples and covalent binding to proteins was not observed. Livers from vehicle-treated HRN™ mice exhibited enhanced lipid accumulation, bile duct proliferation, hepatocellular degeneration and necrosis and inflammatory cell infiltration, which were not present in livers from WT mice. Elevated liver-derived alanine aminotransferase, glutamate dehydrogenase and alkaline phosphatase activities were also observed in plasma from HRN™ mice. When treated orally with diclofenac for 7 days, at 30 mg/kg/day, the severities of the abnormal liver histopathology and plasma liver enzyme findings in HRN™ mice were reduced markedly. Oral diclofenac administration did not alter the liver histopathology or elevate plasma enzyme activities of WT mice. These findings indicate that HRN™ mice are valuable for exploration of the role played by hepatic P450s in drug biotransformation, but poorly suited to investigations of drug-induced liver toxicity. Nevertheless, studies in HRN™ mice could provide novel insights into the role played by inflammation in liver injury and may aid the evaluation of new strategies for its treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.