Abstract

Perinatal exposure to bisphenol A (BPA), a widely distributed environmental endocrine disruptor, is associated with insulin resistance and diabetes in offspring. The underlying molecular mechanisms could involve epigenetics, as adverse effects induced by environmental exposure in early life are suggested through DNA methylation. In this study we sought to elucidate the relationship between perinatal BPA exposure and alteration of hepatic DNA methylation. Pregnant Wistar rats were administered BPA (50 μg/kg/day) or corn oil by oral gavage throughout gestation and lactation. Variables associated with insulin resistance and hepatic DNA methylation were examined at postnatal week 3 and week 21 in male offspring. In BPA-treated offspring, serum insulin and HOMA-insulin resistance were increased, and the insulin sensitivity index and hepatic glycogen storage were decreased compared with controls at week 21. At week 3, none of these variables were significantly changed. However, hepatic global DNA methylation was decreased, accompanied by overexpression of DNA methyltransferase 3B mRNA at week 3. Meanwhile, perinatal exposure to BPA induced promoter hypermethylation and a reduction in gene expression of hepatic glucokinase. Moreover, increased promoter hypermethylation of Gck became more pronounced in BPA-treated offspring at week 21. Abnormal DNA methylation in hepatic tissue precedes development of insulin resistance induced by perinatal BPA exposure. These findings support the potential role of epigenetics in fetal reprogramming by BPA-induced metabolic disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.