Abstract

Direct reprogramming of somatic cells into pluripotent cells by retrovirus-mediated expression of OCT4, SOX2, KLF4, and C-MYC is a promising approach to derive disease-specific induced pluripotent stem cells (iPSCs). In this study, we focused on three murine models for metabolic liver disorders: the copper storage disorder Wilson's disease (toxic-milk mice), tyrosinemia type 1 (fumarylacetoacetate-hydrolase deficiency, FAH−/− mice), and alpha1-antitrypsin deficiency (PiZ mice). Colonies of iPSCs emerged 2-3 weeks after transduction of fibroblasts, prepared from each mouse strain, and were maintained as individual iPSC lines. RT-PCR and immunofluorescence analyses demonstrated the expression of endogenous pluripotency markers. Hepatic precursor cells could be derived from these disease-specific iPSCs applying an in vitro differentiation protocol and could be visualized after transduction of a lentiviral albumin-GFP reporter construct. Functional characterization of these cells allowed the recapitulation of the disease phenotype for further studies of underlying molecular mechanisms of the respective disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.