Abstract

Introduction: The underlying mechanism involved in the recurrence of hepatoma after hepatic arterial embolization (HAE) is not adequately examined. An immunosuppressive cytokine, transforming growth factor β1 (TGF-β1), can lead to tumor progression and is affected by hypoxia in various cancers. The study aimed to assess the effect of HAE on the expression of TGF-β1 in a rat hepatoma model. Methods: Sprague-Dawley rats bearing N1S1 hepatoma cells underwent HAE (HAE group, n = 5) or sham treatment (sham group, n = 4). The animals were euthanized at 48 h, and liver tissues were harvested. Immunohistochemistry (IHC) and quantitative polymerase chain reaction (qPCR) were performed to compare the expression of TGF-β1 and hypoxia-inducible factor 1α (HIF-1α) between the HAE and sham groups. In vitro experiments with the N1S1 cell line were also performed under normoxic (21% O<sub>2</sub>) or hypoxic (1% O<sub>2</sub>) conditions for 48 h, and the expression of TGF-β1 and HIF-1α was assessed with western blotting and enzyme-linked immunosorbent assay. Statistical data comparisons were performed by Student t test. Results: IHC showed that both the TGF-β1-positive and HIF-1α-positive tumor peripheral areas were larger in the HAE group (6.59 ± 2.49 and 10.26 ± 4.14%; p < 0.001, respectively) than in the sham group (0.34 ± 0.41 and 0.40 ± 0.84% respectively). Similarly, qPCR showed that the mRNA expression levels of TGF-β1 and HIF-1α were higher (1.95 ± 0.38-fold and 1.62 ± 0.37-fold; p < 0.001 and p = 0.002, respectively) in the HAE group than those in the sham group. TGF-β1 expression was suppressed when HIF-1α inhibitors were added (p = 0.001), and HIF-1α expression was upregulated when exogenous TGF-β1 was added (p = 0.033) in N1S1 cells. Conclusion: HAE enhanced local TGF-β1 expression in a rat hepatoma model. In vitro experiments suggest that HAE-induced hypoxic stress may trigger the interdependent expression of TGF-β1 and HIF-1α.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.