Abstract

The interactions among the gut, liver, and immune system play an important role in liver disease. Probiotics have been used for the treatment and prevention of many pathological conditions, including liver diseases. Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) was used herein, in conjunction with chemometric data analysis, to identify metabolites significantly affected by probiotics in mice fed with or without alcohol. The metabolomics analysis indicates that the levels of fatty acids increased in mouse liver and decreased in mouse feces when mice were chronically exposed to alcohol. Supplementing the alcohol-fed mice with culture supernatant from Lactobacillus rhamnosus GG (LGGs) normalized these alcohol-induced abnormalities and prevented alcoholic liver disease (ALD). These results agree well with previous studies. In addition to diet-derived long chain fatty acids (LCFAs), LGGs may positively modify the gut's bacterial population to stimulate LCFA synthesis, which has been shown to enhance intestinal barrier function, reduce endotoxemia, and prevent ALD. We also found that several amino acids, including l-isoleucine, a branched chain amino acid, were downregulated in the liver and fecal samples from animals exposed to alcohol and that the levels of these amino acids were corrected by LGGs. These results demonstrate that LGGs alleviates alcohol-induced fatty liver by mechanisms involving increasing intestinal and decreasing hepatic fatty acids and increasing amino acid concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.