Abstract

In this study, a heparinized micropattern surface was prepared for the spatial control of human mesenchymal stem cells (hMSCs) that can differentiate into the desired tissues. Poly(styrene-co-vinylbenzyl N,N-diethyl-dithiocarbamate) (poly(ST-co-VBDC)) was synthesized as a photoreactive polymer; poly(ethylene glycol) methacrylate (PEGMA) was polymerized on the poly(ST-co-VBDC) coated surface by UV irradiation. XPS spectra revealed the residual DC moieties on the PEGMA-grafted surface and the linear chain growth of PEGMA was monitored according to irradiation time. After chemical immobilization of heparin onto this PEGMA surface, surface micropatterning was carried out by additional photopolymerization of PEGMA using a photomask. After incubation for 4 hour, the hMSCs adhered to the heparinized surface, while the hydrophilic PEGMA surface demonstrated no cell adhesion even after basic fibroblast growth factor (bFGF) treatment. Good alignment of hMSCs on the pattern-surface was distinctly observed along micron-sized grooves due to the presence of both heparin and bFGF. This heparinized micropattern surface can be used to study in vitro hMSCs responses with various heparin-binding growth factors in tissue engineering fields as well as cellular array for the spatial control of hMSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call