Abstract

Controlled release of human vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) from hydrogels composed of chemically modified hyaluronan (HA) and gelatin (Gtn) was evaluated both in vitro and in vivo. We hypothesized that inclusion of small quantities of heparin (Hp) in these gels would regulate growth factor (GF) release over an extended period, while still maintaining the in vivo bioactivity of released GFs. To test this hypothesis, HA, Gtn, and Hp (15 kDa) were modified with thiol groups, then co-crosslinked with poly (ethylene glycol) diacrylate (PEGDA). Either VEGF or bFGF was incorporated into the gels before crosslinking with PEGDA. Release of these GFs in vitro could be sustained over 42 days by less than 1% Hp content, and was found to decrease monotonically with increasing Hp concentration. As little as 0.03% Hp in the gels reduced the released VEGF fraction from 30% to 21%, while 3% Hp reduced it to 19%. Since the minimum Hp concentration capable of effective controlled GF release in vitro was found to be 0.3% (w/w), this concentration was selected for subsequent in vivo experiments. To evaluate the bioactivity of released GFs in vivo, gel samples were implanted into the ear pinnas of Balb/c mice and the resulting neovascularization response measured. In the presence of Hp, vascularization was sustained over 28 days. GF release was more rapid in vitro from gels containing Gtn than from gels lacking Gtn, though unexpectedly, the in vivo neovascularization response to Gtn-containing gels was decreased. Nevertheless significant numbers of neovessels were generated. The ability to stimulate localized microvessel growth at controlled rates for extended times through the release of GFs from covalently linked, Hp-supplemented hydrogels will ultimately provide a powerful therapeutic tool.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.