Abstract

The effect of heparin on the binding of epidermal growth factor (EGF) to vascular smooth muscle cells (SMC) was examined. Heparin pretreatment of SMC obtained from bovine aortic explant tissue resulted in significant reductions in the amount of EGF bound. Decreases in mitogen binding were observed with both growth arrested as well as exponentially growing cultures. The heparin concentrations (10-100 micrograms/ml) and pretreatment times (48-72 h) necessary for suppression of EGF binding correlated with the concentrations and temporal requirements necessary for growth inhibition. Chondroitin sulfate, which has negligible antiproliferative activity, had no effect on EGF binding. However, a highly inhibitory heparan sulfate species obtained from postconfluent SMC suppressed EGF binding by 45%. Platelet-derived growth factor and insulin-like growth factor-1 binding were unaffected by heparin. Scatchard analysis revealed that heparin induced 50 to 60% reductions in the numbers of high and low affinity EGF receptors without detectable changes in the binding affinity or ratio of high to low receptors. Experiments were also performed with enzymatically dispersed SMC. These cultures were inhibited by heparin in a time dependent manner which was partially reversible in the presence of EGF. Subsequent studies revealed that heparin suppressed EGF binding in these cultures by 20 to 40%. In summary, heparin reduces the number of EGF receptors on both explant and enzyme dispersed SMC by a mechanism which closely parallels the antiproliferative effects of this glycosaminoglycan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call