Abstract
Previous reports have shown that heparin may promote human hypotension and vascular relaxation by elevation of NO levels through unclear mechanisms. We hypothesized that endothelial muscarinic M(3) receptor activation mediates the heparin-induced vasodilation of rat aortic rings. The experiments were carried out using unfractionated heparin extracted from bovine intestinal mucosa, which elicited an endothelium and NO-dependent relaxation of aortic segments with maximal potency and efficacy (EC(50): 100±10 μmol/L; E(max): 41±3%). Atropine and 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide inhibitors reduced the heparin-dependent relaxation, indicating that M(3) muscarinic receptor is involved in this phenomenon. However, no direct binding of heparin to muscarinic receptors was observed. More importantly, studies performed using the arginine-glycine-aspartic acid peptide and 1-(1,1-dimethylethyl)-3-(1-naphthalenyl)-1H-pyrazolo[3,4-day]pyrimidin-4-amine, an Src family inhibitor, reduced by 51% and 73% the heparin-dependent relaxation, respectively, suggesting the coupling of heparin and M(3) receptor through extracellular matrix molecules and integrin. Furthermore, unfractionated heparin induced activation of focal adhesion protein kinase, Src, and paxillin. Finally, fluorescence resonance energy transfer approach confirmed the interaction of the M(3) receptor to integrin. Taken together, these data demonstrate the participation of M(3) receptor and integrin in heparin-dependent relaxation of vascular smooth muscle. These results provide new insights into the molecular mechanism and potential pharmacological action of heparin in vascular physiology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.