Abstract

Combination chemotherapy using more than two therapeutic agents with different modes of action is a promising strategy that can be used to enhance the therapeutic efficacy of cancer treatment, even though it is a complicated treatment modality. The aim of this study was to investigate how a novel multidrug nanocarrier is effective for combination chemotherapy in vitro and, more specifically, whether combined agents with different modes of action and physicochemical properties show synergistic cytotoxicity with the use of this nanocarrier. A heparin-Pluronic (Hep-Pr) nanogel encapsulating both paclitaxel and DNase was shown to be efficient for intracellular delivery with respect to size, encapsulation efficiency, and intracellular uptake/fates. As a result of these properties, a Hep-Pr nanogel combined with paclitaxel and DNase exhibited a dose-dependent synergistic cytotoxicity compared to single drug and free-drug treatments, whose combination indices were 0.93 and 0.45 at higher concentrations (250 and 500 μg/mL). Therefore, Hep-Pr nanogels have the potential to deliver multitherapeutic agents with different characteristics and thereby enhance the therapeutic efficacy of combination cancer chemotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.