Abstract

Heparin is a commonly used in the clinic, however, Heparin's effect on endothelial injury remains unclear. The aim of the present study was to evaluate the effects and possible mechanisms of action underlying heparin treatment in lipopolysaccharide (LPS)-induced endothelial injury in vitro. TNF-α, IL-1β, IL-6 and IFN-γ levels were measured using ELISA. Cell proliferation was measured using a 5-ethynyl-2'-deoxyuridine (EdU) assay. The number of apoptotic cells and apoptotic rate were evaluated using TUNEL assays and flow cytometry, respectively. Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88) and NF-κB (p65) gene expression was evaluated using reverse transcription-quantitative PCR, whilst TLR4, MyD88 and p-NF-κB (p65) protein expression was evaluated using western blot analysis. The levels of phosphorylated NF-κB in the nucleus were evaluated using cellular immunofluorescence. Compared with those in the normal control group, TNF-α, IL-1β, IL-6 and IFN-γ levels were significantly increased in the LPS group (P<0.001). In addition, 5-ethynyl-2'-deoxyuridine (EdU)-positive cells were significantly increased and apoptosis was significantly decreased (P<0.001). TLR4, MyD88 and NF-κB (p65) expression was also significantly increased (P<0.001). Compared with those in the LPS group, following heparin treatment, TNF-α, IL-1β, IL-6 and IFN-γ levels were significantly decreased (P<0.05), whilst the number of EdU-positive cells was significantly increased and the level of apoptosis was significantly decreased (P<0.05). TLR4, MyD88 and NF-κB (p65) expression was also significantly decreased by heparin in a dose-dependent manner (P<0.001). Small interfering RNA-TLR4 transfection exerted similar effects to those mediated by heparin in alleviating endothelial injury. In conclusion, heparin suppressed LPS-induced endothelial injury through the regulation of TLR4/MyD88/NF-κB (p65) signaling in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.