Abstract

Heparanase is an endo-beta- D-glucuronidase that is capable of cleaving heparan sulfate side chains of heparan sulfate proteoglycans on cell surfaces and the extracellular matrix, activity that is strongly implicated in tumor metastasis and angiogenesis. Evidence was provided that heparanase overexpression in human leukemia, glioma, and breast carcinoma cells results in a marked increase in tissue factor (TF) levels. Likewise, TF was induced by exogenous addition of recombinant heparanase to tumor cells and primary endothelial cells, induction that was mediated by p38 phosphorylation and correlated with enhanced procoagulant activity. TF induction was further confirmed in heparanase-overexpressing transgenic mice and correlated with heparanase expression levels in leukemia patients. Heparanase was also found to be involved in the regulation of tissue factor pathway inhibitor (TFPI). It was shown that heparanase overexpression or exogenous addition induces two- to threefold increase of TFPI expression. Similarly, heparanase stimulated accumulation of TFPI in the cell culture medium. Extracellular accumulation exceeded, however, the observed increase in TFPI at the protein level and appeared to be independent of heparan sulfate and heparanase enzymatic activity. Instead, a physical interaction between heparanase and TFPI was demonstrated, suggesting a mechanism by which secreted heparanase interacts with TFPI on the cell surface, leading to dissociation of TFPI from the cell membrane and increased coagulation activity, thus further supporting the local prothrombotic function of heparanase. As heparins are strong inhibitors of heparanase, in view of the effect of heparanase on TF/TFPI pathway, the role of heparins' anticoagulant activity may potentially be expanded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.