Abstract
Heparan sulfate proteoglycans are abundant molecules in the extracellular matrix and at the cell surface. Heparan sulfate chains are composed of groups of disaccharides whose side chains are modified through a series of enzymatic reactions. Deletion of these enzymes alters heparan sulfate fine structure and leads to changes in cell proliferation and tissue development. The role of heparan sulfate modification has not been explored in the vessel wall. The goal of this study was to test the hypothesis that altering heparan sulfate fine structure would impact vascular smooth muscle cell (VSMC) proliferation, vessel structure, and remodeling in response to injury. A heparan sulfate modifying enzyme, N-deacetylase N-sulfotransferase1 (Ndst1) was deleted in smooth muscle resulting in decreased N- and 2-O sulfation of the heparan sulfate chains. Smooth muscle specific deletion of Ndst1 led to a decrease in proliferating VSMCs and the circumference of the femoral artery in neonatal and adult mice. In response to vascular injury, mice lacking Ndst1 exhibited a significant reduction in lesion formation. Taken together, these data provide new evidence that modification of heparan sulfate fine structure through deletion of Ndst1 is sufficient to decrease VSMC proliferation and alter vascular remodeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.