Abstract

BackgroundTrastuzumab is an antibody widely used in the treatment of breast cancer cases that test positive for the human epidermal growth factor receptor 2 (HER2). Many patients, however, become resistant to this antibody, whose resistance has become a major focus in breast cancer research. But despite this interest, there are still no reliable markers that can be used to identify resistant patients. A possible role of several extracellular matrix (ECM) components—heparan sulfate (HS), Syn-1(Syndecan-1) and heparanase (HPSE1)—in light of the influence of ECM alterations on the action of several compounds on the cells and cancer development, was therefore investigated in breast cancer cell resistance to trastuzumab.MethodsThe cDNA of the enzyme responsible for cleaving HS chains from proteoglycans, HPSE1, was cloned in the pEGFP-N1 plasmid and transfected into a breast cancer cell lineage. We evaluated cell viability after trastuzumab treatment using different breast cancer cell lines. Trastuzumab and HS interaction was investigated by confocal microscopy and Fluorescence Resonance Energy Transfer (FRET). The profile of sulfated glycosaminoglycans was also investigated by [35S]-sulfate incorporation. Quantitative RT-PCR and immunofluorescence were used to evaluate HPSE1, HER2 and Syn-1 mRNA expression. HPSE1 enzymatic activity was performed using biotinylated heparan sulfate.ResultsBreast cancer cell lines responsive to trastuzumab present higher amounts of HER2, Syn-1 and HS on the cell surface, but lower levels of secreted HS. Trastuzumab and HS interaction was proven by FRET analysis. The addition of anti-HS to the cells or heparin to the culture medium induced resistance to trastuzumab in breast cancer cells previously sensitive to this monoclonal antibody. Breast cancer cells transfected with HPSE1 became resistant to trastuzumab, showing lower levels of HER2, Syn-1 and HS on the cell surface. In addition, HS shedding was increased significantly in these resistant cells.ConclusionTrastuzumab action is dependent on the availability of heparan sulfate on the surface of breast cancer cells. Furthermore, our data suggest that high levels of heparan sulfate shed to the medium are able to capture trastuzumab, blocking the antibody action mediated by HER2. In addition to HER2 levels, heparan sulfate synthesis and shedding determine breast cancer cell susceptibility to trastuzumab.

Highlights

  • Trastuzumab is an antibody widely used in the treatment of breast cancer cases that test positive for the human epidermal growth factor receptor 2 (HER2)

  • An invasion assay using MCF7 cells treated with approximately 8 μg/mL of trastuzumab showed that this antibody was able to inhibit the invasion of these cells in matrigel [29]

  • Our results showed that trastuzumab in doses higher than 15 μg/mL was able to decrease MCF7 cell viability

Read more

Summary

Introduction

Trastuzumab is an antibody widely used in the treatment of breast cancer cases that test positive for the human epidermal growth factor receptor 2 (HER2). Trastuzumab is a humanized, monoclonal antibody that blocks HER2 activation and cell signaling [3] It is approved for use in patients who have HER2-positive disease, estrogen receptor/progesterone receptor-negative disease or a high-risk feature [4]. Patients that present breast cancer in early stage, when treated with trastuzumab had a 9% increase in absolute disease free survival at five years, while for patients with metastatic disease the period is extended only by five to nine months [2]. 20% of breast cancer patients in early stages do not respond to trastuzumab therapy and 70% of the patients with metastatic disease who received trastuzumab as monotherapy become resistant to this antibody [5] by mechanisms which are still not completely understood

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call