Abstract

BackgroundHeparan sulfate (HS) proteoglycans (PG) may be found at the chondrocyte surface and in the pericellular cartilage matrix, and are involved in cell-cell and cell-matrix interactions. An important function of HS chains is to regulate cell fate through specific interactions with heparin-binding proteins (HBP) modulated by their complex sulfation pattern. Osteoarthritis (OA) is a joint disorder characterized by the degradation of articular cartilaginous extracellular matrix. The aim of this study was to investigate HS structure and functions in osteoarthritic cartilages compared to normal cartilages (controls).MethodsGlycosaminoglycans (GAG) were extracted from human macroscopically normal cartilages (controls, n = 7) and (OA cartilages n = 11). HS were isolated and quantified using the DMMB quantification method. Their structure and functions were then compared using respectively a HPLC analysis and HBP binding tests and their phenotypic effects on murine chondrocytes were studied by RQ-PCR. Statistical analyzes were performed using a one-way ANOVA followed by a Dunnett’s test or a t test for pairwise comparisons.ResultsIn OA, HS were characterized by increased sulfation levels compared to controls. Moreover, the capacity of these HS to bind HBP involved in the OA pathophysiological process such as FGF2 and VEGF was reduced. Chondroitin sulfates and keratan sulfates regulated these binding properties. Finally, HS from OA cartilages induced the mRNA levels of catabolic markers such as MMP3, MMP13, and TS4 and inhibited the mRNA levels of anabolic markers such as COL2, ACAN, SOX9, and VEGF in murine articular chondrocytes.ConclusionThe sulfation of HS chains was increased in OA cartilages with changes in HBP binding properties and biological effects on chondrocyte phenotypes. Thus, modified HS present in altered cartilages could be a novel therapeutic target in OA.

Highlights

  • Heparan sulfate (HS) proteoglycans (PG) may be found at the chondrocyte surface and in the pericellular cartilage matrix, and are involved in cell-cell and cell-matrix interactions

  • Based on these overall differences between control and OA samples, the analysis of the percentage of each GAG species relative to the total amount (Panel E) showed that the chondroitin sulfates (CS) fraction was increased and the most represented in OA cartilages compared to control ones

  • GAG from OA cartilages induce a catabolic phenotype in murine articular chondrocytes We investigated whether GAG extracted from OA and control cartilages could affect the anabolic and catabolic phenotypes of murine neonatal articular chondrocytes (Fig. 4)

Read more

Summary

Introduction

Heparan sulfate (HS) proteoglycans (PG) may be found at the chondrocyte surface and in the pericellular cartilage matrix, and are involved in cell-cell and cell-matrix interactions. Osteoarthritis (OA) is a joint disorder characterized by the degradation of articular cartilaginous extracellular matrix. Osteoarthritis (OA) is the most common disabling joint disorder and is associated with a high economic burden. It is characterized by joint cartilage degradation, subchondral bone remodeling, and synovitis [1]. The articular cartilage performs biomechanical functions within the joint, sustained by an extracellular matrix (ECM) very rich in fibrillar proteins such as collagens, and in proteoglycans such as aggrecan. As a result of ECM injuries or changes in ECM quality with aging, chondrocytes become hyper-activated They secrete different degrading matrix enzymes and decrease anabolic activities, triggering their own hypertrophy and the mineralization process, that are characteristic stages of OA [3]. Sulfated GAG (HS, CS, and KS) are covalently bound to core proteins to form proteoglycans (PG), whereas nonsulfated HA remains free in the ECM

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.