Abstract

Epithelial-mesenchymal transition (EMT) is a critical early event in tumorigenesis. The contribution of heparan sulfate (HS) to EMT has not been fully elucidated. HS D-glucosaminyl 3-O-sulfotransferase-3B1 (3-OST-3B1) participates in the final step of HS fine structure biosynthesis, whose involvement in cancer has yet to be determined. This study demonstrated that following treatment with trichostatin-A, a histone deacetylase inhibitor, 3-OST-3B1 gene expression was activated in the pancreatic cancer cell line, PANC-1. By chromatin immunoprecipitation analysis, permissive histone modifications including an increase in histone H3 lysine 9 monoactylation (H3 ac K9) but a decrease in methylated histone H3 (H3 me K9) were observed accompanying transcriptional activation of 3-OST-3B1. Functional, results revealed that increased 3-OST-3B1 levels were involved in the promotion of EMT processes. In vitro studies demonstrated that overexpression of 3-OST-3B1 in both pancreatic cancer cells and vascular endothelial cells could trigger an EMT-like phenotype as evidenced by the up-regulation of Snail at the mRNA and protein level, and its nuclear translocation. And 3-OST-3B1 appeared to be sufficient for the development of a more mesenchymal phenotype in vivo. Together, the results from this study unveiled a distinct function for 3-OST-3B1 as an EMT inducer in cancer and provided a link between histone modification and EMT modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.