Abstract

Antinuclear antibodies (ANAs) are important biomarkers in the diagnosis of autoimmune diseases in humans; however, the diagnostic performance of ANA in nonclinical safety studies are not well understood. Here, we studied the use of ANAs as potential nonclinical biomarkers for drug-induced autoimmunity (DIA) using a Hep-2 based indirect immunofluorescence assay (IFA). Initially, MRL-faslpr/J mice and HgCl2-treated rats were used as SLE-positive models. Serum samples obtained from 94 normal mice or 204 normal rats aged one to four months served as the negative control. The IFA effectively distinguished ANAs-positive samples in both species with a cut-off titer of 1:100. Brown Norway rats were treated with 450mg/kg d-penicillamine for 30 consecutive days. ANAs were generated and corresponded with DIA development. Human Hep-2 cells, mice Neuro 2A cells, and Chinese Hamster Lung cells served as antigen from different species, which were found cross-reactive with ANA-positive serum samples from mice, rats, and humans without any differences in diagnosis. This methodology showed no species-specificity for ANA detection. Furthermore, we found approximately 20 percentage of the mice aged seven to eight months demonstrated age-related ANAs, which was consistent with humans. Overall, our findings demonstrated the use of ANA detection using IFA in the nonclinical diagnosis of murine drug-induced autoimmunity, and age-related ANAs should be considered when aged animals are used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.