Abstract

Many nonvolatile organic compounds, e.g., polyaromatic hydrocarbons (PAHs), are readily stripped during aerobic biodegradation. This is because of the high infinite dilution activity coefficient resulting from forces generated by the water-organic interactions at the molecular level. Several models have been proposed for air-stripping based on the Henry’s law constant. By definition, the Henry’s law constant is the infinite dilution activity coefficient multiplied by the pure component vapor pressure. In this article, a gas saturation technique was used to measure the very low vapor pressures exhibited by these nonvolatile compounds. Literature values of other PAHs have been tabulated and are presented. For determining infinite dilution activity coefficients, a differential ebulliometery apparatus has been constructed. In this technique, the boiling point difference between pure water and a water-organic solution is measured very precisely. Thermodynamics is then used to calculate the infinite dilution activity coefficient. The method’s accuracy has been tested using the phenol-water system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call