Abstract

Abstract Several metaheuristic optimization algorithms have been developed to solve the real-world problems recently. This paper proposes a novel metaheuristic algorithm named Henry gas solubility optimization (HGSO), which mimics the behavior governed by Henry’s law to solve challenging optimization problems. Henry’s law is an essential gas law relating the amount of a given gas that is dissolved to a given type and volume of liquid at a fixed temperature. The HGSO algorithm imitates the huddling behavior of gas to balance exploitation and exploration in the search space and avoid local optima. The performance of HGSO is tested on 47 benchmark functions, CEC’17 test suite, and three real-world optimization problems. The results are compared with seven well-known algorithms; the particle swarm optimization (PSO), gravitational search algorithm (GSA), cuckoo search algorithm (CS), grey wolf optimizer (GWO), whale optimization algorithm (WOA), elephant herding algorithm (EHO) and simulated annealing (SA). Additionally, to assess the pairwise statistical performance of the competitive algorithms, a Wilcoxon rank sum test is conducted. The experimental results revealed that HGSO provides competitive and superior results compared to other algorithms when solving challenging optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.