Abstract

Henkin quantifiers have been introduced in Henkin (1961). Walkoe (1970) studied basic model-theoretical properties of an extension L*1(H) of ordinary first-order languages in which every sentence is a first-order sentence prefixed with a Henkin quantifier. In this paper we consider a generalization of Walkoe's languages: we close L*1(H) with respect to Boolean operations, and obtain the language L1(H). At the next level, we consider an extension L*2(H) of L1(H) in which every sentence is an L1(H)-sentence prefixed with a Henkin quantifier. We repeat this construction to infinity. Using the (un)-definability of truth – in – N for these languages, we show that this hierarchy does not collapse. In addition, we compare some of the present results to the ones obtained by Kripke (1975), McGee (1991), and Hintikka (1996).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.