Abstract

The implications of thermal demagnetization with respect to the observation of interaction effects in Henkel plots are discussed within the framework of a scalar moving Preisach model. The Preisach distribution is assumed to be a product of a Gaussian coercive field distribution and a Gaussian interaction field distribution. Numerical calculations of the magnetizing and demagnetizing remanences show that, by contrast with other demagnetizing procedures, thermal demagnetization yields Henkel plots whose direction of curvature is uniquely related to the sign of the mean interaction field. In particular, a distribution of interaction fields which is symmetric about the origin yields the same linear Wohlfarth relation as a completely noninteracting system, while demagnetizing (magnetizing)-like mean fields always curve the Henkel plot below (above) the Wohlfarth line. The simple linearity of the Henkel plot in the absence of mean field effects was exploited to evaluate the effectiveness of a recent proposal for experimentally suppressing shape demagnetizing effects in perpendicular recording media. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.