Abstract
In order to study the transience of Hendricks libraries, we introduce and study a special class of Markov chains, the Tsetlin d-piles, generalizing Tsetlin libraries and briefly defined as follows: a 1-pile is a Tsetlin library and a d-pile is a Tsetlin library where each book is replaced by a (d − 1)-pile. We give a stationary measure of these chains and establish the necessary and sufficient conditions for positive recurrence and transience. Finally, the study of d-piles allows us to determine a sufficient condition for transience of quite a large class of Hendricks libraries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.