Abstract

Driven by new discoveries in stem-cell biology and regenerative medicine, there is broad interest in biomaterials that go beyond basic interactions with cells and tissues to actively direct and sustain cellular behavior. Keratin biomaterials have the potential to achieve these goals but have been inadequately described in terms of composition, structure, and cell-instructive characteristics. In this manuscript we describe and characterize a keratin-based biomaterial, demonstrate self-assembly of cross-linked hydrogels, investigate a cell-specific interaction that is dependent on the hydrogel structure and mediated by specific biomaterial–receptor interactions, and show one potential medical application that relies on receptor binding - the ability to achieve hemostasis in a lethal liver injury model. Keratin biomaterials represent a significant advance in biotechnology as they combine the compatibility of natural materials with the chemical flexibility of synthetic materials. These characteristics allow for a system that can be formulated into several varieties of cell-instructive biomaterials with potential uses in tissue engineering, regenerative medicine, drug and cell delivery, and trauma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.