Abstract

In this paper we introduce HEMOS (Humor-EMOji-Slang-based) system for fine-grained sentiment classification for the Chinese language using deep learning approach. We investigate the importance of recognizing the influence of humor, pictograms and slang on the task of affective processing of the social media. In the first step, we collected 576 frequent Internet slang expressions as a slang lexicon; then, we converted 109 Weibo emojis into textual features creating a Chinese emoji lexicon. In the next step, by performing two polarity annotations with new “optimistic humorous type” and “pessimistic humorous type” added to standard “positive” and “negative” sentiment categories, we applied both lexicons to attention-based bi-directional long short-term memory recurrent neural network (AttBiLSTM) and tested its performance on undersized labeled data. Our experimental results show that the proposed method can significantly improve the state-of-the-art methods in predicting sentiment polarity on Weibo, the largest Chinese social network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.