Abstract

BackgroundMyocardial hemorrhage is a frequent complication following reperfusion in acute myocardial infarction and is predictive of adverse outcomes. However, it remains unsettled whether hemorrhage is simply a marker of a severe initial ischemic insult or directly contributes to downstream myocardial damage. Our objective was to evaluate the contribution of hemorrhage towards inflammation, microvascular obstruction and infarct size in a novel porcine model of hemorrhagic myocardial infarction using cardiovascular magnetic resonance (CMR).MethodsMyocardial hemorrhage was induced via direct intracoronary injection of collagenase in a novel porcine model of ischemic injury. Animals (N = 27) were subjected to coronary balloon occlusion followed by reperfusion and divided into three groups (N = 9/group): 8 min ischemia with collagenase (+HEM); 45 min infarction with saline (I-HEM); and 45 min infarction with collagenase (I+HEM). Comprehensive CMR was performed on a 3 T scanner at baseline and 24 h post-intervention. Cardiac function was quantified by cine imaging, edema/inflammation by T2 mapping, hemorrhage by T2* mapping and infarct/microvascular obstruction size by gadolinium enhancement. Animals were subsequently sacrificed and explanted hearts underwent histopathological assessment for ischemic damage and inflammation.ResultsAt 24 h, the +HEM group induced only hemorrhage, the I-HEM group resulted in a non-hemorrhagic infarction, and the I+HEM group resulted in infarction and hemorrhage. Notably, the I+HEM group demonstrated greater hemorrhage and edema, larger infarct size and higher incidence of microvascular obstruction. Interestingly, hemorrhage alone (+HEM) also resulted in an observable inflammatory response, similar to that arising from a mild ischemic insult (I-HEM). CMR findings were in good agreement with histological staining patterns.ConclusionsHemorrhage is not simply a bystander, but an active modulator of tissue response, including inflammation and microvascular and myocardial damage beyond the initial ischemic insult. A mechanistic understanding of the pathophysiology of reperfusion hemorrhage will potentially aid better management of high-risk patients who are prone to adverse long-term outcomes.

Highlights

  • Myocardial hemorrhage is a frequent complication following reperfusion in acute myocardial infarction and is predictive of adverse outcomes

  • A mechanistic understanding of the pathophysiology of reperfusion hemorrhage will potentially aid better management of high-risk patients who are prone to adverse long-term outcomes

  • Two animals died during the infarct procedure in both the Infarction without Hemorrhage (IHEM) and I+Hemorrhage without Infarction (HEM) groups, overall representing a 20% mortality rate associated with the ischemic event

Read more

Summary

Introduction

Myocardial hemorrhage is a frequent complication following reperfusion in acute myocardial infarction and is predictive of adverse outcomes. It remains unsettled whether hemorrhage is a marker of a severe initial ischemic insult or directly contributes to downstream myocardial damage. Our objective was to evaluate the contribution of hemorrhage towards inflammation, microvascular obstruction and infarct size in a novel porcine model of hemorrhagic myocardial infarction using cardiovascular magnetic resonance (CMR). A study by Mather et al [6] demonstrated that hemorrhage was associated with large infarct size, reduced salvage, greater MVO and lower ejection fraction; it was the strongest independent predictor of adverse left ventricular (LV) remodeling with an increased risk of arrhythmia and predictive power even greater than MVO. It was further found that hemorrhage was more associated with adverse remodeling and N-terminal pro-brain natriuretic peptide (surrogate outcomes) and cardiovascular death and heart failure following discharge (health outcomes) than MVO

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.