Abstract

Hemolin, a member of the immunoglobulin protein superfamily, functions in Lepidoptera as an opsonin in defence against potential pathogens and seems to play a role in tissue morphogenesis. We show that hemolin gene is expressed in several organs of Galleria mellonella larvae, including the nervous system and the silk glands. The expression in the silk glands of the wandering larvae and their isolated abdomens is enhanced within 6 h after an injection of bacteria, lipopolysaccharides, or peptidoglycans. The magnitude of silk gland response to bacterial challenge is similar to that seen in the fat body. A profound rise of hemolin expression without bacterial inoculation occurs in the silk glands of isolated abdomens when they are induced to pupate by a topical application of 20-hydroxyecdysone (20E). The induction of pupation is associated with silk gland programming for disintegration by apoptosis and phagocytosis. Administration of a juvenile hormone agonist prevents pupation and abolishes the stimulatory 20E effect on the hemolin expression. Hemolin protein can be immunodetected in the silk glands as well as in the spun-out cocoon silk. The results suggest that silk glands are a component of the insect immune system and that hemolin may mark the apoptic cells for the elimination by hemocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call