Abstract

An abnormal hemoglobin, termed Hb Savannah, was found in red cell hemolysate of a young Caucasian girl with severe hemolytic anemia. The presence of this unstable variant became evident when inclusion bodies appeared rapidly upon exposure of red cells to redox dyes and a large percentage of hemoglobin in hemolysate precipitated on warming to 65 degrees C. Treatment of the hemoglobin with p-hydroxymercuribenzoate (PMB) caused a rapid dissociation into monomers; starch-gel electrophoresis of PMB-treated hemoglobin showed the presence of abnormal beta-chains. Data from structural studies of isolated beta-chains indicated substitution of a valyl residue for the normally occurring glycyl residue at position 24, which corresponds to helical residue B6. A similar substitution but with an arginine replacing the glycyl residue has been observed in Hb Riverdale-Bronx. The glycine to valine substitution will change the relationship of the B and the E helices which results in extensive conformational changes in the beta-chain. This change presumably causes an increased dissociation of the hemoglobin molecule into dimers and probably monomers, and a decreased stability of the alphabeta-dimers. The hemoglobin abnormality may be the result of a fresh mutation because the abnormality is not present in the parents nor in any of the seven siblings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.