Abstract

Hemoglobin (Hb) inside and outside the red blood cells (RBCs) undergoes constant transformation to an oxidized form in a process known as autoxidation. The ferrous heme iron (Fe2+) of the prosthetic group is spontaneously transformed into an oxidized ferric (Fe3+) form, but under oxidative stress conditions a higher oxidation ferryl heme (Fe4+) is also formed. Although Fe3+ is a non-functional form of Hb, the Fe4+ is also extremely reactive towards other biological molecules due to its high redox potential. The RBC contains an effective reductive machinery that maintains Hb in the functional form with little oxidation during its life span. The redox transformation of Hb occurs to a lesser extent in young RBCs; it may, however, have detrimental effects on the integrity of these cells during ex vivo storage or when RBCs are subjected to pathogen reduction processes. In this review, Hb oxidation reactions (“oxidative lesion”) will be described, including details of how these reactions might impact the clinical use of stored or processed blood for therapeutic purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.