Abstract

Hemoglobin is an excellent source of iron supplements, and its hydrolyzate spontaneously binds iron during digestion and promotes iron absorption in vivo. However, the underlying mechanisms of what peptides bind and how they bind iron ions remain unclear. This study prepared the porcine hemoglobin hydrolyzate through enzymatic hydrolysis and acid treatment and investigated the mechanisms of hemoglobin hydrolyzate on iron absorption through the determination of iron levels in dietary intervention mice, iron binding site analyses, peptide digestion analyses, molecular simulation docking, and INT407 cell validation. The results showed that ingestion of the hemoglobin hydrolyzate diets increased iron levels in the blood of mice, accompanied by the upregulation of duodenal iron circulation-related genes such as ferritin, PCBP1, and HP. Carboxyl, imidazole groups, and aromatic amino acid residues were iron binding sites of hemoglobin hydrolyzate during digestion. VDEVGGEA and VDEVGGE were found to involve the spontaneous and efficient binding of hemoglobin hydrolyzate to iron ions in the intestinal cavity. In particular, the DEVGGE peptide was the typical sequence for hemoglobin hydrolytic peptides to exert iron binding activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call