Abstract

A family of aspartic proteases called plasmepsins is important for hemoglobin degradation in intraerythrocytic Plasmodium parasites. Plasmepsin II (PM II) is the best studied member of this family. PM II and its close orthologs and paralogs form homodimers with extensive interfaces in all known crystal structures. This raised the question whether the homodimer is the functional subunit of plasmepsins in solution. We have used gel filtration chromatography, site-directed mutagenesis, and analytical ultracentrifugation to study the oligomeric status of PM II in solution. Our results reveal that PM II exists mainly as a monomer in solution and that the monomer is fully functional for catalysis. A hydrophobic loop at the PM II monomer surface, which would be buried in a PM II dimer, is shown to be essential for the hemoglobin degradation capability of PM II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.