Abstract

The use of hemoglobin (Hb) to drive atom transfer radical polymerization (ATRP) process (Hb-ATRP) for detection of lung cancer related nucleic acid is firstly reported. Hb does not need to be treated prior to using indicating the potential for synthetic engineering in complex biological microenvironments without the need for in vitro techniques. Here, we report a new signal amplification strategy using Hb-mediated graft of nitronyl niroxide monoradical polymers as a signal-on electrochemical biosensor for ultralow level DNA highly selective detection. Building DNA biosensors includes: (i) the fixation of peptide nucleic acid (PNA) probe (no phosphate group) via the 5′ terminus-SH; (ii) the modification of transition metal; (iii) Site-specific markers of Hb-ATRP promoter, and (iv) the grafting of polymers with electrochemical signal by Hb-ATRP process. Through the Hb-ATRP process of nitronyl nitroxide monoradical (TEMPO), the presence of a small amount of DNA can eventually result in calling a certain number of TEMPO redox tags. Obviously, the Hb-ATRP is a method of easy source of raw materials, simple operation and no need for complex equipment. The constructed biosensor, as expected, is highly selective and sensitive to target DNA. The detection limit can be calculated as 15.96 fM under optimal conditions. The excellent performance also shows that the constructed DNA biosensor is suitable for DNA screening and DNA concentration determination in complex sample matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.