Abstract
ABSTRACTWhen present in the homozygous form, hemoglobin C (HbC, CC disease) increases red cell density, a feature that is the major factor underlying the pathology in patients with SC disease (Fabry et al., JCI 70, 1315, 1982). The basis for the increased red cell density has not yet been fully defined. We have generated a HbC mouse in which the most successful founder expresses 56% human α and 34% human βC. We introduced knockouts (KO) of mouse α- and β-globins in various combinations. In contrast to many KO mice, all partial KOs have normal MCH. Full KOs that express exclusively HbC and no mouse globins have minimally reduced MCH (13.7 ± 0.3 pg/cell vs 14.5 ± 1.0 for C57BL/6) and a ratio of β- to α-globin chains of 0.88 determined by chain synthesis; hence, these mice are not thalassemic. Mice with βC > 30% have increased MCHC, dense reticulocytes, and increased K:Cl cotransport. Red cell morphology studied by SEM is strikingly similar to that of human CC cells with bizarre folded cells. We conclude that red cells of these mice have many properties that closely parallel the pathology of human disease in which HbC is the major determinant of pathogenesis. These studies also establish the existence of the interactions with other gene products that are necessary for pleiotropic effects (red cell dehydration, elevated K:Cl cotransport, morphological changes) that are also present in these transgenic mice, validating their usefulness in the analysis of pathophysiological events induced by HbC in red cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.