Abstract
The relationship between portal hemodynamics and the energy metabolism of the liver with acute hepatic venous occlusion (HVO) was investigated by assessing the changes in the hepatic blood flow, arterial blood ketone body ratio (AKBR) and adenylate energy charge potential (ECP) of the liver tissue in canine model. Acute HVO was induced by the ligation of both the supra- and infrahepatic inferior vena cava (IVC) over the protruding ends of a heparin-coated polyethylene cannula inserted into the IVC. All dogs with only HVO (n = 5) died within 30 min. HVO dogs with additional mesocaval (MC) shunt (n = 10) survived longer than 7 days, during which time their AKBR were maintained in the normal range (over 1.0). ECP was also maintained above the normal level (over 0.850) during the 28-day period. Along with increasing portal pressure caused by the narrowing of the shunt anastomosis, the hepatic blood flow decrease gradually, resulting in a sudden decrease in AKBR and ECP when the portal pressure increased over 11 mm Hg. It is suggested that the normalization of portal pressure is one of the most important factors for maintaining the hepatic energy metabolism and that MC shunt is an effective therapy for maintaining the function of the liver with HVO, as long as portal pressure can be kept within normal range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.