Abstract

To clarify the cause of higher water fluctuation of the brain in idiopathic normal pressure hydrocephalus (iNPH), we assessed change in hemodynamic-independent apparent diffusion coefficient during the cardiac cycle (ΔADC) in iNPH. Electrocardiographically synchronized single-shot diffusion echo-planer imaging (b = 0, 500, and 1000 s/mm2) was performed in healthy volunteers, atrophic ventricular dilation group, and iNPH group, respectively. The ΔADC (b = 0 and 1000 s/mm2) and maximum ADC (b = 0 and 500 s/mm2) in the cardiac cycles were measured at the frontal white matter in the brain. Then, self-corrected ΔADC was obtained from the ΔADC divided by the maximum ADC (ADCpeak: perfusion-related diffusion) to correct the blood flow effect. The ΔADC after correction was significantly higher in the iNPH group than in the other two groups. However, there was no significant difference in ADCpeak values among the groups. Self-corrected ΔADC in iNPH increased because of changes in the biomechanical properties of the brain. Self-corrected ΔADC analysis makes it possible to obtain information on hemodynamically independent water fluctuation as well as perfusion in iNPH. Analysis self-corrected ΔADC provides simultaneously information on biomechanical properties, perfusion, and water fluctuation in iNPH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call