Abstract
Prolonged usage of disposable extracorporeal membrane oxygenation (ECMO) circuitry increases the risk of mechanical complications due to breakdown or malposition of the circuit elements. Often, such complications are life threatening for the critically ill patient. Such problems need to be rapidly identified and corrected. Algorithms can be especially helpful in such acute, life-threatening situations. We have outlined an algorithm that uses the relationship between three hemodynamic variables that can be used to rapidly identify mechanical dysfunctions associated with use of the ECMO circuit. These hemodynamic variables are premembrane pressure, pump flow, and patient mean systemic arterial pressure (the PPP triad). These variables are interrelated as a change in one variable results in a change in another. Mechanical malfunction can eliminate this relationship. Changes in one variable only suggest mechanical impairment or failure of the ECMO system. When such a change is detected, a checklist can be rapidly reviewed that directs an immediate logical assessment of potential mechanical causes of hemodynamic compromise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.