Abstract
Hemodynamic responses to cocaine vary greatly between animals, and the variability is related to the incidence of cocaine-induced cardiomyopathies and hypertension. The variability in cardiac output and systemic vascular resistance responses to cocaine in individuals is correlated with the responses to acute startle (air jet). This experiment was designed to determine whether responses to cocaine and to air jet are related to those evoked by a conditioned stimulus (tone preceding foot shock) and to an unconditioned stimulus (cold water). We verified the relationship in hemodynamic response patterns between cocaine and cold stress using selective receptor antagonists. Rats were instrumented with a pulsed Doppler flow probe on the ascending aorta for determination of cardiac output and with an arterial cannula for recording arterial pressure and heart rate. After recovery, some rats were tested multiple times with four different stimuli: air jet (6 trials), 15-s tone preceding 1-s foot shock (12 trials), cold water exposure (1 cm deep for 1 min, 4-12 trials), and cocaine (5 mg/kg iv, 4-6 trials) while hemodynamic parameters were recorded. Each stimulus was capable of eliciting a pressor response that was associated with variable changes in cardiac output. The cardiac output response to cocaine was correlated with the initial responses to each stressor in individual rats. Responses evoked by cold stress were most similar to those elicited by cocaine. Furthermore, nicardipine (25 microg/kg iv) or atropine methylbromide (0.5 mg/kg iv) pretreatment prevented the cardiac output differences to acute cold stress, as noted after cocaine administration. On the other hand, propranolol (1 mg/kg iv) exacerbated both the decrease in cardiac output and the stress-induced increase in systemic vascular resistance as previously reported with cocaine. Therefore, the initial response to cold water exposure is a reliable method of evoking characteristic hemodynamic response patterns that, as seen with cocaine, may provide a suitable model for identifying the causes for predilection to stress-induced cardiovascular disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Regulatory, integrative and comparative physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.