Abstract

The hemodynamic response function (HRF) characterizes temporal variations of blood oxygenation level-dependent (BOLD) signals. Although a variety of HRF models have been proposed for gray matter responses to functional demands, few studies have investigated HRF profiles in white matter particularly under resting conditions. In the present work we quantified the nature of the HRFs that are embedded in resting state BOLD signals in white matter, and which modulate the temporal fluctuations of baseline signals. We demonstrate that resting state HRFs in white matter could be derived by referencing to intrinsic avalanches in gray matter activities, and the derived white matter HRFs had reduced peak amplitudes and delayed peak times as compared with those in gray matter. Distributions of the time delays and correlation profiles in white matter depend on gray matter activities as well as white matter tract distributions, indicating that resting state BOLD signals in white matter encode neural activities associated with those of gray matter. This is the first investigation of derivations and characterizations of resting state HRFs in white matter and their relations to gray matter activities. Findings from this work have important implications for analysis of BOLD signals in the brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.